Spectral Lifting in Banach Algebras and Interpolation in Several Variables

نویسنده

  • GELU POPESCU
چکیده

Let A be a unital Banach algebra and let J be a closed two-sided ideal of A. We prove that if any invertible element of A/J has an invertible lifting in A, then the quotient homomorphism Φ : A → A/J is a spectral interpolant. This result is used to obtain a noncommutative multivariable analogue of the spectral commutant lifting theorem of Bercovici, Foiaş, and Tannenbaum. This yields spectral versions of Sarason, Nevanlinna–Pick, and Carathéodory type interpolation for F∞ n ⊗̄B(K), the WOT-closed algebra generated by the spatial tensor product of the noncommutative analytic Toeplitz algebra F∞ n and B(K), the algebra of bounded operators on a finite dimensional Hilbert space K. A spectral tangential commutant lifting theorem in several variables is considered and used to obtain a spectral tangential version of the Nevanlinna-Pick interpolation for F∞ n ⊗̄B(K). In particular, we obtain interpolation theorems for matrix-valued bounded analytic functions on the open unit ball of Cn, in which one bounds the spectral radius of the interpolant and not the norm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications

In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the  assumption of normality we establish common fixed point theorems for the generalized quasi-contractions  with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$  in the set...

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

Dual Banach algebras: representations and injectivity

We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way...

متن کامل

Bounded Approximate Character Amenability of Banach Algebras

The bounded approximate version of $varphi$-amenability and character amenability are introduced and studied. These new notions are characterized in several different ways, and some hereditary properties of them are established. The general theory for these concepts is also developed. Moreover, some examples are given to show that these notions are different from the others. Finally, bounded ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001